

2017 Programmer’s Challenge:

Othello Game

API Documentation

2 | 22 Programmer’s Challenge API

Contents

Application Main Loop .. 4

Interfaces ... 4

Protocol .. 4

Common request data .. 5

Common response data ... 5

Authentication ... 5

AuthCode calculation .. 6

Initiate session .. 8

Player initialisation .. 9

Request data .. 9

Response data .. 9

Waiting for game .. 9

Request data .. 9

Response data .. 9

Wait for next turn .. 9

Request data .. 9

Response data ...10

Retriving game info..10

Request data ...10

Response data ...10

PerformMove method ..11

Request data ...11

Response data ...11

Leave game ..11

Request data ...11

Response data ...11

API description ..13

InitLogin ...13

3 | 22 Programmer’s Challenge API

CompleteLogin ..14

CreatePlayer ...15

WaitGameStart ..16

WaitNextTurn ..17

PerformMove ...19

GetPlayerView ...20

LeaveGame ...22

4 | 22 Programmer’s Challenge API

Application Main Loop

The client should keep run for an entire game, and follow the application flow.

START

InitLogin

CompleteLogin

CreatePlayer

WaitNextTurn

WaitGameStart

TurnComplete?

yes

RefTurn=0

no

yes

GameComplete? no GetPlayerViewyesLeaveGame

RefTurn=Turn

[THINK]

PerformMoveCrash Recovery

GameId > 0no

yes

no

YourTurn?

Interfaces

Protocol

The game server uses HTTP and JSON for communication. All requests are made using the
HTTP POST method and all content has Content-Type of application/json.

5 | 22 Programmer’s Challenge API

Common request data

All requests are made using the HTTP POST method and all content has Content-Type of

application/json (ie the request is made using JSON in the message body).

All requests must contain an Auth property with authentication data as described below.

Common response data

All responses are returned with a Content-Type of application/json (ie the response

contains JSON in the message body).

All responses contain two properties:

1. Message : this is a string that contains an error message if an error occured during

request processing. It will be null otherwise.

2. Status : A value indicating whether the request was processed successfully. A status

field is returned from the server for all requests. Possible values for this field are in the

table

Table 1: Status code values

Code Value

OK method executed successfully

WAIT wait for next turn

AUTH Authentication error

FAIL other errors

Authentication

All requests must be authentificated. Authentication information must be sent as part of the
request payload in JSON form.

"Auth": {

// AuthCode – simple Authentication code, calculated as per this API doc

 "AuthCode" : [string],

// ClientName – a unique (player) name that within a team, provided by you

// (you can use this field to identify several your application instances).

 "ClientName" : [string],

// SequenceNumber – each request should have unique sequence number

 "SequenceNumber" : [int],

6 | 22 Programmer’s Challenge API

// SessionId – during login process gathered id used during whole game

// tournament.

 "SessionId" : [int],

// TeamName – unique team name as you are registered in tournament.

 "TeamName" : [string]

 }

AuthCode calculation

The AuthCode value is calculated using following algorithm and functions:

7 | 22 Programmer’s Challenge API

/* *************** Function/Procedure Definitions *************** */

function GetAuthCode returns character (input authString as character):

 define variable utf8String as character no-undo.

 // simple authentication code

 define variable authCode as character no-undo.

 // the team password (from registration)

 define variable pw as character no-undo.

 assign utf8String = codepage-convert(authString + pw,

 session:charset,

 'UTF-8':u)

 authCode = lc(

 hex-encode(

 sha1-digest(

 utf8String)))

 .

 return authCode.

end function.

/* ********************** Main Block ********************** */

define variable authCode as character no-undo.

// team name per registration. unique team name as you are registered in

// tournament.

define variable teamName as character no-undo.

// a unique (per game) player name

define variable playerName as character no-undo.

// the session id. during login process gathered id used during whole game

// tournament.

define variable sessionId as integer no-undo.

// each request should have unique sequence number; recomend use of counter

// for requests

define variable seqNo as integer no-undo.

assign authCode = GetAuthCode(substitute('&1:&2:&3:&4':u,

 teamName, playerName, sessionId, seqNo)).

/* eof */

8 | 22 Programmer’s Challenge API

Initiate session

To get SessionId, your application should call InitLogin and CompleteLogin methods within
defined period of time. Fields SessionId and SequenceNumber of Auth object during both method
calls must be equal 0.

During InitLogin call Challenge code is returned. Gathered code should be transformend and used
in CompleteLogin request. Only both methods calls in short period of time ensure your application
participation in tournament.

The challenge code is transformed to a ChallengeRequestCode using the algorithm/function
above.

define variable challengeRequestCode as character no-undo.

define variable challenge as character no-undo.

assign challenge = '':u // from InitLogin payload

 challengeRequestCode = GetAuthCode(GetAuthCode(challenge)).

After method CompleteLogin call with proper ChallengeRequestCode SessionId will be returned.
SessionId is to be used during all other requests processing.

NOTE: there are should be short period of time between InitLogin and CompleteLogin calls

9 | 22 Programmer’s Challenge API

Player initialisation

In order to play the game you need to create a player instance. The CreatePlayer method is used
for this. Each player can participate in only one game at a time.

Request data

There are no extra properties / data request other than the common request data.

Response data

The response will contain the common response data and an INTEGER PlayerId field which is

used by the server to identify your TeamName / ClientName combination.

Waiting for game

Most of the client‘s time is spent waiting for game. To idle and wait for game WaitGameStart is
called and results are tracked. WaitGameStart returns a GameId valueWaitGameStart have
longer response, so there is no need to wait some time between this procedure calls.

Request data

In addition to the common request data, the API expects a PlayerId property, containing your
assigned Player id (from CreatePlayer call).

Response data

In addition to the common response data, the API returns a GameId property, containing the
current game a player is participating in. If the returned GameId equals -1, the game has not
started yet and that the player should wait until it does. Any other integer value indicates that
game has started.

Wait for next turn

Once a game has started, the application should switch into the move processing loop (see
diagram above). In beginning of game and between turns synchronisation is required. For such
purposes WaitNextTurn method is used.

Request data

In addition to the common request data, the API expects

 PlayerId – the value returned from during CreatePlayer method call.

 RefTurn – the turn number; this is the turn which was completed on the previous time.

In the begin of each game or just right after application start this field should contain

10 | 22 Programmer’s Challenge API

0. Each next turn RefTurn counter should contain value returned by GetPlayerView

call.

Response data

The WaitNextTurn API waits till the turn completes or a timeout reached. In addition to the
common response data, the API returns to following fields

 TurnComplete – LOGICAL value. If the turn is not completed during defined period then

the TurnComplete field contains false. You should call method WaitNextTurn until you

reach TurnComplete equal true.

 GameFinished – true, if the game is completed. You should leave game using the

LeaveGame API and wait for next game – return to game wait loop.

 FinishCondition – if game is already completed this filed will show you how: WON – you

have win the game, LOST – you lost the game, DRAW – you and opponent got same

amount of points.

 FinishComment – if you LOST the game, the reason why.

 YourTurn – LOGICAL value; shows it it is your turn or not. If it is your turn (YourTurn =

true) then you should call PrepareMove method during this turn.

Retriving game info

To get information about the current game, including a map of the board, call the GetPlayerView
API.

Request data

In addition to the common request data, the API expects a PlayerId property, containing your
assigned player id (from CreatePlayer call).

Response data

In addition to the common response data, the following fields are returned

 Index – your ID in this game (zero based INTEGER).

 GameState –the current game state. One of one of following character values: PLAY,

PAUSE, FINISH

 Turn – an INTEGER representing your current turn (used as a RefTurn value during the

WaitNextTurn call).

 PlayerStates – an array of all participants‘ states. Each array entry is a name/value pair

consisting of

o Condition – The current player state (PLAY, WON, LOST, DRAW)

o Comment – Optionally more details

 Map – the current game board, including all disk positions.

o Width, Height – INTEGER values representing the current board size.

o Rows – an array containing Height rows of Width characters. Each character

represents a position on the board

 * represents an empty cell

11 | 22 Programmer’s Challenge API

 0 represents your disks

 1 represents your opponent‘s disks

PerformMove method

When the WaitNextTurn API indicates that it is your turn (via the YourTurn field), you should
callthe PerformMove API. If situation there you do not have valid moves appear you should skip
this move by caling PerformMove with Pass=true specified. If you do not skip moving, so it is the
one of possible LOST conditions.

IMPORTANT NOTE: the game server uses zero-based indexes (ie top left cell is {0, 0}

Request data

In addition to the common request data, the API expects

 PlayerId – your assigned player ID

 Turn – your current move. A pair of Row and Col INTEGER values representing your move

 Pass – LOGICAL value ; TRUE if you want to pass/skip this move. If TRUE then the

Row/Col values for your Turn must be 0, 0

Response data

There are no values returned in addition to the common response data.

Leave game

Once the game completes (WaitNextTurn returns GameFinished=true), the player must leave

the game. This done by LeaveGame method call.

This method should be called to ensure which players are visible for server for the next game. If

it is not then application will be disconnected from server and team will receive a technical

LOST condition.

Request data

In addition to the common request data, the API expects

 PlayerId – your assigned player ID

Response data

There is no extra data returned with the common response data.

12 | 22 Programmer’s Challenge API

13 | 22 Programmer’s Challenge API

API description

Method InitLogin

Call link /ClientService.svc/json/InitLogin

HTTP method POST

Request
{
 "Auth" : {
 "AuthCode" : [string],
 "ClientName" : [string],
 "SequenceNumber" : [int],
 "SessionId" : [int],
 "TeamName" : [string]
 }
}

Request
examples

{
 "Auth" : {
 "AuthCode" : "9b433ba31796f2db8194644a48cf997d723ca765",
 "ClientName" : "Player1",
 "SequenceNumber" : 0,
 "SessionId" : 0,
 "TeamName" : "Auth"
 }
}

Response
{
 "Challenge" : [string],
 "Message" : [string],
 "Status" : [string]
}

Response
examples

{
 "Challenge" : "4cd8b50e-e27c-458b-84f1-acb7181e18c4",
 "Message" : null,
 "Status" : "OK"
}

{
 "Challenge" : null,
 "Message" : "GameLogic.AuthException: For login calls,
SessionId and SequenceNumber must be zero.",
 "Status" : "AUTH"

}

14 | 22 Programmer’s Challenge API

Method CompleteLogin

Call link /ClientService.svc/json/CompleteLogin

HTTP method POST

Request
{
 "ChallengeResponse" : [string],
 "Auth" : {
 "AuthCode" : [string],
 "ClientName" : [string],
 "SequenceNumber" : [int],
 "SessionId" : [int],
 "TeamName" : [string]
 }
}

Request
example

{
 "ChallengeResponse" :
"5c049b982770aeeea03151a34bb48e715fccc752",
 "Auth" : {
 "AuthCode":"9b433ba31796f2db8194644a48cf997d723ca765",
 "ClientName":"Player1",
 "SequenceNumber":0,
 "SessionId":0,
 "TeamName":"Auth"
 }
}

Response
{
 "SessionId" : [int],
 "Message" : [string],
 "Status" : [string]
}

Response
examples

{
 "SessionId" : 567899597,
 "Message" : null,
 "Status" : "OK"
}

{
 "SessionId" : 0,
 "Message" : "GameLogic.AuthException: No outstanding
challenge for this client. Init login first.",
 "Status" : "AUTH"
}

15 | 22 Programmer’s Challenge API

Method CreatePlayer

Call link /ClientService.svc/json/CreatePlayer

HTTP method POST

Request
{
 "Auth":{
 "AuthCode" : [string],
 "ClientName" : [string],
 "SequenceNumber" : [int],
 "SessionId" : [int],
 "TeamName" : [string]
 }
}

Request
example

{
 "Auth":{
 "AuthCode" : "4ae5df6334e1d016dcee781d1f24368130bfdcee",
 "ClientName" : "Player1",
 "SequenceNumber" : 1,
 "SessionId" : 567899597,
 "TeamName" : "Auth"
 }
}

Response
{
 "PlayerId" : [int],
 "Message" : [string],
 "Status" : [string]
}

Response
examples

{
 "PlayerId" : 1,
 "Message" : null,
 "Status" : "OK"
}

{
 "PlayerId" : 0,
 "Message" : "GameLogic.AuthException: Stale session id.
Relogin or stop.",
 "Status" : "AUTH"
}

16 | 22 Programmer’s Challenge API

Method WaitGameStart

Call link /ClientService.svc/json/WaitGameStart

HTTP method POST

Request
{
 "PlayerId" : [int],
 "Auth" : {
 "AuthCode" : [string],
 "ClientName" : [string],
 "SequenceNumber" : [int],
 "SessionId" : [int],
 "TeamName" : [string]
 }
}

Request
example

{
 "PlayerId" : 1,
 "Auth" : {
 "AuthCode" : "425262ba0a44c87184220a8b5509e6fac5d3fa3f",
 "ClientName" : "Player1",
 "SequenceNumber" : 2,
 "SessionId" : 567899597,
 "TeamName" : "Auth"
 }
}

Response
{
 "GameId" : [int],
 "Message" : [string],
 "Status" : [string]
}

Response
examples

{
 "GameId" : -1,
 "Message" : null,
 "Status" : "OK"
}

17 | 22 Programmer’s Challenge API

Method WaitNextTurn

Call link /ClientService.svc/json/WaitNextTurn

HTTP method POST

Request
{
 "PlayerId" : [int],
 "RefTurn" : [int],
 "Auth" : {
 "AuthCode" : [string],
 "ClientName" : [string],
 "SequenceNumber" : [int],
 "SessionId" : [int],
 "TeamName" : [string]
 }
}

Request
example

{
 "PlayerId" : 2,
 "RefTurn" : 0,
 "Auth" : {
 "AuthCode" : "1efb12da2fdc6edbe43a34493352811e8fd59a5d",
 "ClientName" : "Player2",
 "SequenceNumber" : 6,
 "SessionId" : 325487283,
 "TeamName" : "Auth"
 }
}

Response
{
 "FinishComment" : [string],
 "FinishCondition" : [string],
 "GameFinished" : [bool],
 "TurnComplete" : [bool],
 "YourTurn" : [bool],
 "Message" : [string],
 "Status" : [string]
}

Response
examples

{
 "FinishComment" : null,
 "FinishCondition" : "Play",
 "GameFinished" : false,
 "TurnComplete" : false,
 "YourTurn" : true,
 "Message" : null,
 "Status" : "OK"
}

{
 "FinishComment" : null,

18 | 22 Programmer’s Challenge API

 "FinishCondition" : "Won",
 "GameFinished" : true,
 "TurnComplete" : true,
 "YourTurn" : true,
 "Message" : null,
 "Status" : "OK"
}

19 | 22 Programmer’s Challenge API

Method PerformMove

Call link /ClientService.svc/json/PerformMove

HTTP method POST

Request
{
 "PlayerId" : [int],
 "Turn" : {
 "Col" : [int],
 "Row" : [int]
 },
 "Pass" : [bool],
 "Auth" : {
 "AuthCode" : [string],
 "ClientName" : [string],
 "SequenceNumber" : [int],
 "SessionId" : [int],
 "TeamName" : [string]
 }
}

Request
example

{
 "PlayerId" : 1,
 "Turn" : {
 "Col" : 3,
 "Row" : 5
 },
 "Pass" : false,
 "Auth" : {
 "AuthCode" : "ad096fffcfaca914352d5d7934b4cf3e1bc40fe5",
 "ClientName" : "Player1",
 "SequenceNumber" : 14,
 "SessionId" : 1724163314,
 "TeamName" : "Auth"
 }
}

Response
{
 "Message" : [string],
 "Status" : [string]
}

Response
examples

{
 "Message" : null,
 "Status" : "OK"
}

20 | 22 Programmer’s Challenge API

Method GetPlayerView

Call link /ClientService.svc/json/GetPlayerView

HTTP method POST

Request
{
 "PlayerId" : [int],
 "Auth" : {
 "AuthCode" : [string],
 "ClientName" : [string],
 "SequenceNumber" : [int],
 "SessionId" : [int],
 "TeamName" : [string]
 }
}

Request
example

{
 "PlayerId" : 1,
 "Auth" : {
 "AuthCode" : "e1d20b9fc301fd39f30bd3c15522b79316668c4a",
 "ClientName" : "Player1",
 "SequenceNumber" : 24,
 "SessionId" : 1724163314,
 "TeamName" : "Auth"
 }
}

Response
{
 "GameState" : [string],
 "Index" : [int],
 "Map" : {
 "Height":[int],
 "Rows" : [string[]],
 "Width":[int]
 },
 "PlayerStates" : [playerState[]],
 "Turn" : [int],
 "Message" : [string],
 "Status" : [string]
}

playerState:
{
 "Comment" : [string],
 "Condition" : [string]
}

Response
examples

{
 "GameState" : "Play",
 "Index" : 0,

21 | 22 Programmer’s Challenge API

 "Map" : {
 "Height" : 10,
 "Rows" : [
 "**********",
 "**********",
 "**********",
 "*****0****",
 "****00****",
 "****10****",
 "**********",
 "**********",
 "**********",
 "**********"
],
 "Width" : 10
 },
"PlayerStates" : [
 {
 "Comment" : null,
 "Condition" : "Play",
 },
 {
 "Comment" : null,
 "Condition" : "Play",
 }
],
 "Turn" : 2,
 "Message" : null,
 "Status" : "OK"
}

Method LeaveGame

Call link /ClientService.svc/json/LeaveGame

HTTP method POST

Request
{
 "PlayerId" : [int],
 "Auth" : {
 "AuthCode" : [string],
 "ClientName" : [string],
 "SequenceNumber" : [int],
 "SessionId" : [int],
 "TeamName" : [string]
 }
}

Request
example

{
 "PlayerId" : 2,
 "Auth" : {
 "AuthCode" : "53471b3bc3653e88db05c4f2b5886cd499430e9d",
 "ClientName" : "Player2",
 "SequenceNumber" : 17,
 "SessionId" : 142366330,
 "TeamName" : "Auth"
 }
}

Response
{
 "Message" : [string],
 "Status" : [string]
}

Response
examples

{
 "Message" : null,
 "Status" : "OK"
}

{
 "Message" : "System.ApplicationException: Player is not in
a game",
 "Status" : "FAIL"
}

